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Abstract

An Analytic theory for the evolution of high altit~x3.e satellite orbits is
developed in this rote. The distinctive feature of the theory lies in the

dc*~ible averaging of the differential equaticns—onoe over the period of the

orbit , and secondly over the period of the ucon. This technique is called

“intern~diate averaging” to distinguish it fran the conventional &*ibly
averaged theories, and to deIx)te the tine scales inherent in the averaging

technique.

I ~~~~~~~~~~~~~ ~

1 ::~

iii 

L~LL

• :~~~~~
‘ I*~~_ ~~~~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~ ‘~~



~‘ ~~~
—-—

~
— 

~~~~~~~ —~~~~~ -— -~~~~ -,-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~

CONTENTS

I. INTRODUCTION 1

I I .  BACK GROUND 1

III. THE SYSTEM OF EQUATIONS 2

IV . THE PERTURBINC FORCES

V. THE SINGLY AVERAGED EQUATIONS 5

VI . INTERMEDIATE AVERAGING 5

VII . PROBLEM OF SINGULARITIES 6

VIII. CONCLUSION 7

REFERENCES 9

APPENDIX 1 10

• 0 • ‘ AppgI~Drx 2 
- . — •  •- • • a . . . • - . 1? ...

4~
,.

V

: : ~~~ ~. ~~~~~~~~~~ •
~~~~~~~.a_

_

. ~ 
____



I. INTI~)DUCTION

An analytic theory for the .volution of high altitude satellite orbits is

developed in this note. The distinctive feature of the theory lies in the

double averaging of the differential equations--once over the period of the

orbit, and secondly over the period of the moon. This technique is called

“intermediate averaging” to distinguish it from the conventional doubly

averaged theories, and to denote the time scales inherent in the averaging

technique.

II. BACKGROUND

Analytical theories for the evolution of orbits of artificial satellites

of the earth have been developed from the early days of satellites. The aim

has been to provide computationally efficient formulations that could be used

b6t1

~ 

f~r orbital analysir and t rbit estimation. - (A .oomprehensive. b i.bliograp~y

is provided by Dallas: Ref. 1). The alternate technique is the accurate,

relatively compact but computationally expensive method of direct nim~erica1

integration of the differential equations for orbital evolution.

By far the most cos~ on technique that has been applied in the develop-

ment of analytical theories is that of averaging over the time scales in-

herent in the differential equations. An adequate exposition of the method

of averages is provided by Lorell et al. (Ref. 2). The characteristic features

of orbital theories developed using the technique are:

1. They are expressed as analytical formulae for the rates of change of

mean elements.

~1.

1
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2. The theories are generally either to first or to second order in the

expansion of the geopotential (higher order theories do exist and are

employed occasionally).

3. The first averaging is over the mean anomaly of the satellite which

is the fastest periodic variable in the system, with the necessary

short-periodic terms also being formulated.

4. The second averaging is over the period of the argument of perigee

which is typically the second fastest variable, at least for low

altitude orbits; and the necessary long—periodic terms are also

derived.

A complete theory would then consist of the doubly averaged secular rates of

change of the mean elements, along with the long-periodic and the short-

pe4 iQd.i~ ~~~~~~ • .• . .. . . - .. . - - .  . . .

III. THE SYSTEM OF EQUATIONS

The well-known Gauss form of the variational equations in the Keplerian

elements of the orbit are used in this paper to develop an alternate theory

for high altitude satellite orbits. The equations are as follows:

= 
a 

~~ (eF
1 sin v + F2 

E1

d
Fdt ae ~i 2 2ae dt

dt (sin Z)/(up) F3 sin (w + v)

= 
i(iip) 

F3 cos (w + v)

A

2
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1 c~-~ (—F~ cos V + F
2 
sin v(l + ~) I — (cos I)

and

dl’l 2r ½ d~ dw
dt 

- = 
“(pa) 

F
1 

- £ ((cos I) +

where a = the semi—major axis

e = the eccentricity

I = the inclination of the plane of the orbit to the equator

= the right ascension of the ascending node of the orbit

w = the argument of perigee of the orbit

M = the mean anomaly of the orbit

2

p = a c
• 

- 
p = the gravitational constant of the earth

r — the geocentric radial distance to the satellite

v = the true anomaly of the satellite

n — the mean motion

F
1
, F2, F3 

= the components of the perturbing force along the instan-

taneous radial, transverse and normal directions to the

satellite orbit.

Certain features of the above equations should be noticed. Firstly, the

Gauss form has been altered slightly in the equations for e, w and M in order

to take advantage of coemionality of terms. Secondly, the differential equa-

tions are linear in the perturbing forces. Thirdly, singularities at e — 0

or I — 0 exist; these will be conmtented on later.
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IV. THE PERTURBING FORCES

The perturbations considered here result f rom the zonal harmonic terms in

the geopotent ial and the point mass gravitational effects of the sun and the

moon. The perturbing force due to the zonal harmonics can be written as

p3 R n
-~~ n e -÷ . —‘- -#

F = — C—) ((n + 1)P u - P’ s3.n I cos u u - P’  cos I u I
n 2 r n r n t n n

r

where n = the degree of the zonal harmonic

3 = the zonal harmonic coefficientn

R = the equatorial radius of the earth

= the n-th order Legendre polynomial in the argument (sin ~)

iS = the geocentric latitude of the satellite

d
n d(sin iS)

~~~~~ 
~~~~~

, 

~ ~~ e 1i~~tabteot~s m ’ ~.t vewtors—al.cng.the radial.. t,n~rasverse.ap4 .. • _  -

normal directions in orbit.

The perturbing force due to a third body (the moon or the sun) can be

written as

~ ~
‘k r q -

~~ 
+

F = — (—) 1-P ’ U + P’ U. I
q 

r
2 r

k 
q r q+l ic

k

where q = the order of the term in the Lengendre polynomial expansion of the

perturbing force

— the gravitational constant of the k-th body

rk 
— the geocentric distance to the k-th body

Pq 
- the q-th order tengendre polyn3mial in the argument ~ = (~~~ . ‘~k~

— the instantaneous geocentric w~it vector to the third body.
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Geopotential zonal. harmonic terms up to order 4 only will be included in

the theory. Only the first term in the expansion of the third body perturba-

tion will be considered. Neglected terms are at least an order of magnitude

smaller, for satellites in half-synchronous orbits, and at least a factor of

4 smaller for synchronous satellites. Atmospheric drag is neglected in this

theory.

V. THE SINGLY AVERAGED EQUATIONS

The first step in developing an analytical theory is to average the dif-

ferential equations over the fastest variable on the right hand side of the

equations, which is the mean anomaly of the satellite. A considerable body

of results already exists for this step and we will adopt the results of Liu

(Ref. 3) for the singly averaged equations due to the geopotential. Liu
— .  . - 

~~~~~... ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~ .. -~~~~~~ • - ..
tabulates both the averaged rates and the short periodic terms , the lai~t4r

being computed only to order

The third-body perturbations must also be averaged over the period of

the satellite. The relevant results for the averaged effects are taken from

• earlier work (Ref. 4) of an author of this note. The short-periodic terms

due to the third body were, however, not derived in Ref . 4, and hence were

developed for this note. They are tabulated in Appendix 1 along with the

singly averaged rates of the elements due to the third body.

VI. INTERMEDIATE AVERAGING

The singly averaged equations c~~e to the geopotential show a periodic

dependence on the argument of perigee. However, the rate of change of the
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argument of perigee in high altitude orbits is less than 1 deg/day. Thus,

the period is of the order of a y~~r or larger.

The singly averaged equations due to the third body exhibit dependence

on the position of the third body , and hence on its perio~1. And , for the

moon, the period is 29 days. Hence, the fastest variable lef t in the singly

averaged equations is the mean anomaly of the moon. Mathematically,

= 
~~~~~ ~~~ + f

T
(z
~ 

M
T
)

where ~ > = singly averaged rates

= terms due to the geopotential

= terms due to the third body

M~ = the mean anomaly of the third body

z = any element of the satellite orbit in the set
4 • . . . . I. - e.

The next step in averaging is

= 
~~~~~~~~~ 

3
n~ 

+ 
~~ 

J

T~~ 

~T~~
’ M~)dt

where T M is the moon’s period. Neither the geopotential terms nor the third

• body terms due to the sun are affected by this step of averaging. But the

mean anomaly of the moon is averaged out of the equations. The rates aver-

aged over the intermediate period for the moon are tabulated in Appendix 2.

The theory would not be complete without the intermediate periodic

terms, whose basic period is that of the moon. These terms have been derived

and are also given in Appendix 2.

VII. PROBLEM OF SINGULARITIES

-
~~~~ The original differential equations are singular at the values e = 0

and I = 0. These singularities do carry over into the theory developed here.
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As the eccentricity goes to zero, the perigee becomes ill—defined . Hence ,

the short-periodic corrections in the mean anomaly and in the argument of

perigee become large. However, these two corrections are of nearly equal mag-

nitude and oppc~site in sign. Thus, the position of the satellite in the orbit

as defined by w + M does not exhibit any singularity. Unless the eccentricity

becomes so small that the precision of computation affects results (an un-

likely case), the theory remains valid.

As the inclination goes to zero, the line of nodes, and hence the value

of ~~, become ill-defined. The theory does exhibit this singularity in the

itcular terms. And again, the change in the value of ~2 is nearly equal and

opposite in sign to that of w, the argument of perigee. Thus the pos~tion

of perigee can be defined using the value of (~2 + ~~) .  Another solution is

also possible: the reference plane can be changed from the equator to, say,

the ecliptic, or preferably, a plane containing the earth’s polar axis. Very

little needs to be changed in the theory to accommodate a plane change.

Finally , the classic problem of singularity at critical inclination does

not exist in this theory as no averaging is carried out over the period of the

argument of perigee.

VIII. CONCLUSION

A theory for high altitude orbits has been developed using the concept

of intermediate averaging. The final theory consists of the following addi-

tive, separable parts:

1) The averaged rates of change of the orbital elements due to the geo-

potential (intermediate averaging leaves the singly averaged expres-

sions unchanged);

I
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• 2) The short periodics due to the geopotential~

3) The intermediate averaged rates due to the moon;

4) The intermediate periodic terms due to the moon;

5) The averaged rates due to the sun (intermediate averaging leaves the

singly averaged expressions unchanged) ;

6) The short periodic terms due to the sun and the moon.

The theory is being implemented in an analytic orbit determination program

called ANODE (Ref. 5) for the Millstone Hill Radar.
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APPENDIX 1

SINGLY AVERAGED RATES AND SHORT PERIODICS DUE TO THIRD BODY

The singly averaged rates of change of the orbital elements of a satellite

due to the point mass perturbations of a third body are recorded in this part

of the appendix. The theory is restricted to the first term in the Lengendre

polynomial expansion of the perturbing force due to the third body.

= 0

= — 

~~~~~~~ 
cos w — £

~~2~~3 
sin w)

<
dt

> = 
2 ½ sin I 

[(5 — 

~~~~~~ 
S~~fl W + 

~~2~ 3 cos wi

= -~~
-
~~~ AeE~~ ~

= ~~Ac
½ (4~~~

_
~~~ - 1) - cos I

— n> = [8 + 12e + 15e2 
- 3(1 + 12e + 22e2)~~ - 2lc~~ I

- c:(co: I +

where A n(—) (—)
P

n = the mean motion of satellite

p = gravitational constants of k-th body and the earth

a semi—major axis of satellite orbit

rk = geocentric distance to third body

‘~ ~~~~~~~ I = inclination of the satellite orbit to equator

e = eccentricity of satellite orbit

2

w — argument of perigee of satellite orbit

;- - 10
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— projections of the geocentric unit vector to th: third body

on the satellite orbital axes u ,  unit normal, ~~ to

.4 -9-

perigee, and U
Q~ 

normal to u~ in the orbit plane

M = mean anomaly of satellite.

The short-periodic perturbations due to a third body are tabulated below.

~c 1
~1~3 

cos w (—4~ e Sj fl E + 
Sifl 2E 

+ ~~
— sin 2E — e3 sin E

— sin 3E) + £~~1E 3 
sin w(—~~ cos E + cos 2E + ~~

— cos 2E

— . cos 3E) + £
~~2~3 

cos w (~2. cos E - 1 cos 2E - 
~~~

- cos 2E

+ ~~~~~- cos 3E) - C ~2F~3 
sin w (-~- sin E - 4 sin 2E + sin 3E)I

= 
~ 
A 1 

~~~~~~ 
cos w (~~ cos E — 4 cos 2E - ~~

— cos 2E
£ sin l

-: + cos 3E) + 
~l~ 3 

w(-4 e sin E - e3 sin S + 4 sin 2E
+ ~~

— sin 25 — sin 3E) + C
~~2~3 

S1fl  w (~— con E 
- 4 cos 2E

— 
~~

— cos 2E + 
~~~~~ 

cos 3E) + 
~~2~3 

cos w (—~ sin E -4 sin 2E
+ sin 3E)J

. ~~~ = ~~~~ 
(~a~) — 3c~ ~ 4 [c ½ (~~ — ~~) (~ e con S - 4 cos 2E

— cos 2E + ~~~~~ cos 3E) + 
~l~2~4 

sin 2E - 2e sin E - sin 2E)

— e~1~2(4 
sin E + ~~~~~— sin 5 + sin 3E — sin 3E — sin 2E)I

...-‘
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= - con I(~~~) + £ 
~ sin E - sin 2E) (1 — 3C~)

— 3e~~1~2 (—co s E + ~~
- con 2E)J + 3~~! 

~~l~2 
c4 sin 2E — 2e sin 5)

+~~—~~~~~—~~)(4sjns+~~~sjn 2E— ~~~sin 3E) + e sin 2E)

AM = _c½ [cos I(AQ ) + (Aw )) - 2~-(3e(sin E + sin E - ~~
- sin 2E

+ sin 3E) + ~~~~~~~~~~~ ~! e sin E - e3 sin E + 4 sin 25
+ ~~

— sin 2E - sin 3E) + f ~~c(- ~ sin E - 4 sin 2E
+ sin 3E) + 6~l~2c

½
(P cos E - 4 cos 25 - cos 2E

+~~~~cos 3E)

and

= 
~~ (ee

’
~(3~~ 

- 1) (—cos S + ~~
- cos 2E) + 3e~1~2(6 sin E

— sin 2E) + 3~½ (~~ — ~~) (e con E — 
cos 2E) 

+ 
~~~~~~ 

sin 2E

— 2e sin 5) + 
~~
. sin 2EI

where S is the eccentric anomaly of the satellite, and 6 = 1 + e
2
.
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APPENDIX 2

INTERMEDIATE AVERAGING OF THE PERTURBATIONS DUE TO THE MOON

This part of the appendix records the intermediate averaged perturbations

of a satellite orbit due to the point mass effect of the moon.

= -4 ! B sin cos 3k 
[(5 - 4c) con w sin APk

- c sin w cos APkl

= 4 ~ sin I 
~~~ ~k 

con 
~k 

[(5 — 4c) sin w sin AP
k

+ C COS w

de 15 . . 2
= ~~

— nBec sin 2APk 
Slfl

• = 4 nBc
½ [sin

2 

~k 
con 2APk — 2) — cos I

— n>> = — c~~[cos I <‘C > + <<~~>>J + B ( 2 ( 8  + l2e + 15e2)

- 21c(sin2 APk 
+ cos2 

~k ~~~~ APk )

- 3( 1 + 12e + 22e2) (con2 APk + J~ sin
2 
APk)J

and

= 0dt
Intermediate averaging also yields periodic terms wi th the moon ’s period .

These are recorded below.

Aa
1~~~— 0

$ç.
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AII,P — ~~~~~ ( (5 - 4c) con w x ®— c sin w x

where Q (4 con APk coB (2ui~ + 2vk
) + 4 sin 3k cos sin APk sin (2 w ~ + 2vk )

+ con AP~ con (2w~ + 3’
~k~ 

+ Con AP~ con (2w.~ +

C ek- sin AP~ ~~~ COS J)ç S1~fl Vk + sin APk sin 3k ~O5

sin (2w~ + 3’
~k~ 

+ sin APk 
sin cos 

~k 
sin (2w.~ + vk )

= {—4 sin APk con (2w~ + 2v
k
) + 4 cos AP~ ~~~ ~k COS 

~k sin (2wk + 2vk )

sin AP~ cos (2w.~ + 3vk
) - j~

. sin AP
k 
con (2w

k + U
k

)

-~~ cos AP~ sin 3k cos 
~k sin Vk + con APk ~~~ ~k cos

e
sin (2w.~ 

+ 3’k~ 
+ coc APk ~~~~ 3k COS 3k sin (2w.,C + “k~ ~

sin I — [(5 - 4c) sin w x (1) + E cos w x ~2, ]

where (
~
) and are as above in AI1~~.

= - 4~ ~
— Bec~~t4 sin 2APk {— e k sin - ~~ +

- 4 sin 2(Wk + Uk
) - sin (2w

k + 3vk ) }  + 4 sin 2APk COS ~k

{ek sin Uk 
- sin (2w

k + vk
) - 4 sin (2w k + 2”k~

- sin (2w k + 3”k~~ 
+ 4 con 2APk COS 

~k {~ con (2wk + Uk
)
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— 4 con (2w~ + 2vk ) - con (2w k + 3vk

) })

~~I,P 
— BE~~f 4 x 1 - . - 5~ I - cos I

where

• 1 2 . 1 2 2
— con APk sin (2wk + 2vk

) - sin APk con

sin (2wk + 2U
k

) — sin 2APk C05 
~k 

cos (2w
k 

+ 2vk
)

ek 2
+ T.. APk 

sin + COS APk ~~~~ (2w
k + 3vk

)

ek 2 2
+ ~~ con 2 AP~ sin (2w

K 
+ Uk

) + sin APk 
cos 3k sin

ek
- AP~ CO~ 

~k 
sin (2wk + 3vk

)

C ek
— ~~ sin2 

APk COS
2 J~ sin (2w k + Uk ) - sin 2APk

~~~~ ~~ cos (2w~ + 3V
k

) - sin 2APk COS 
~k con (2w.K + Uk

) ~

= (4 sin2 
APk sin (2wk + 2vk

) - 4 con 2 AP~

sin (2w.,~ 
+ 2vk ) + sin 

~~~k 
COS 

~k con (2w.
K 

+ 2vk )

+ ~~ sin2 AP
k 

sin Uk + sin
2 
AP~ sin (2wk 

+ 3V
k

)

+ 

C
k ~2 APk ~~~ (2w k + Uk ) + 

Ck 2 AP
k 

2 
~ sin Uk

2 2 ek 2 2
- con APk COB 

~k sin (2W k + 3Uk
) - con APk ~~~
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e
sin (2w

k + Uk ) + sin 
~~~k 

COS 
~k 

cos (2w
k + 3U

k
)

ek
+ sin 2AP~ ~~~~ 

~k ~~~~ (2wk + Uk
)

= sin U~~

= — ) 8t — 3 ( l  + 12e + 22e2) x — 2].c x + (8 + l2e + 15e2)
k

x •~~
‘ ) — C½ [COS I( Ac~1~~ ) +

and

= 0.

The only symbols used here but not defined in Appendix 1 are :

= mean motion of moon around earth

B = (Pk/u)
(a/p

k
)3 C~~

’2

= parameter of the orbit of the moon

= inclination of the satellite orbit with respect to the moon’s orbit

APk = argument of perigee of the satellite orbit with respect to the

moon ’s orbit

= argument of perigee of the moon measured with respect to the

satellite orbit

Uk = true anomaly of the moon in its orbit

— eccentricity of the orbit of the moon
2Ck l C k~~ 4

~;i
i

16

~~~~~~ ~~ ‘ ~ •~:
- ii~ ~‘i !I~ ~~~~~~~~~~~~~~~~~~



_—.~~~ 
-• .-. “

~~~~~~~
.-‘

~~
. • ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~

UNCLASSIFIED
SECURITY CL AT ION OF THIS PAGE (Wk.. D.ga tat.r.d)

REPORT DOCUMENTATION PAGE 
_________________________

2. GOVT ACCESSION NO. 3. RECIPIENT S CATALOG NUMBER
- JP~~~~~~~~~’P~ I /

4. TITLE (.ad S,,bs~ l.J 
• ~v 1~~ E O F REPQg~ &.LI&Oo~COVE R EO

/ 
(~

. fAn lntermediate-Averaged meory for ( 

t
~~~./iec~~ cai,~~te~ /lHlgh Altitude Orbits• 

- -- 

a. PERFORMING ORG. REPORT NUMBER
Technical Note 1979-25

7. AUTHOR( s) S. CONTRACT OR GRANT NUMSER(’)

Ramaswam~/

t
Sridharan ~~~ William P./Seniw / (j i  ~j Fl9628-78-C-ø~)2J 

/ 
... -. - • • - — - -• - - \ ._

/.—
_____ _

I. PERFORMING ORGANIZATION N AM E  AND ADDRESS IS .  PROGRAM E L E M E N T . PROJECT . TASK
AR EA A WORK UNIT NUMBERSLincoln Laboratory , M.I .T . /

P.O. Box 73 program NnI 3101SFLexington, MA 02173 1’
ii. CONTROLLIN G OFFICE NAME AND ADDR ESS IV~~,EPORT DATE

Air Force Systems Command, USAF ( / ~
. 27 Jw~~~797 -—

Washington, DC 20331 1 USER OF PAGES _~2 L~.--: ~ 
(

14. MONITORING AGENCY NAME & ADDRESS (1 d4ff .NM fr~ 
Co.srvthi,1 Offac.) 13. SECURITY CLASS. (of 1I,4a 

-•

UnclassifiedElectronic Systems Division
Hanscom AFB

4 ~~~~~~~ 13.. DECLASSIFICATION DOWNGRADINGovusO • SO4EDULE

16. DISTRIBUTION STATEMENT (of 9*4. R.po#s) -• -_ -
~~

- ~~Approved for public release; distribution unlimited. / 4 !  / N — 
_ -- - -—- -

17. DISTRIBUTION STATEMEN T fif th. .ba~roct .,ur.d so Slick 20. if dAff.r.su f ro.~ R.port)

II. SUPPLEMENTARY NOTES

None

I~. KEY WORDS (Co.tu,.. 00 rev.,., aid, if o.c.aa , .,d id.iuify by block os.~b.r)

high altitude satellite orbits inwrmediate averaging”

20. ASSI ACT (Co.ao.. .o r.v.r.. aid. If a.c..wy 4 i4.auft by &4..6 .. b.,)

An analytic theory for the evolution of high altitude satellite orbits is developed In this n~e.The distinctive feature of the theory lies In the double averaging of the differential equations —
once ovqr the period of the orbij,. and secondly over the period of the moon. This technique Is
called °intermediate averaging to distinguish It from the conventional doubly averaged theories,
and to denote the time scales inherent In the averaging technique.

DO 1~~~~~ 3 1473 EDITION OF 1 NOV 65 IS OBSOLETE UNCLAS~ F1ED
SECURITY CI.ASIIFICA7ION OF TNI$PAGE (V3.o D~~.t ae,r.d)

: ~~~~~~~~~~~~~~~~ 

- 

~~ 

- _ _ _ _ _ _ _ _ _ _  

~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- 

~~~ I


